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The compressible inviscid leading-edge vortex 

By S. N. BROWN 
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The conically symmetric solution of the Eulerian equations of an incompressible 
fluid obtained by Hall, thought to be descriptive of flow properties in a leading- 
edge vortex, is generalized to include the effects of compressibility. 

1. Introduction 
An interesting feature of the flow over a slender delta wing at incidence is the 

presence of leading-edge vortices which are formed by the rolling-up of the shear 
layer that separates from a leading edge. A theoretical study of the core structure 
has been made by Hall (1961), who found approximations to the velocity and 
pressure distributions by dividing the flow into a convective outer part and a 
diffusive subcore. For the outer region viscous effects were ignored, and, as the 
flow throughout was assumed to be axisymmetric, this resulted in conical velocity 
and pressure fields. For the inner part of the core approximations analogous to 
those of boundary-layer theory were made on the assumption that changes in 
the radial direction occur much more rapidly than those in the axial direction 
for a slender core. The join of the two solutions was satisfactory from a practical 
point of view, and a paper by Stewartson & Hall (1963) has since made the match 
mathematically valid by defining appropriate variables to describe the flow in 
the inner layer. The flow throughout was taken to be incompressible, continuous 
and rotational. 

The effect of viscosity on the incompressible leading edge vortex having thus 
been examined, i t  therefore seemed of interest to examine the effect of com- 
pressibility on the inviscid vortex, and this topic is the subject of this paper. 
The simplified model of the core is similar to that adopted by Hall in that it is 
geometrically slender, the velocity and pressure fields are steady and axially 
symmetric, and the flow is continuous and therefore rotational as it includes no 
vortex sheet. When the viscous terms of the Navier-Stokes equations are ignored, 
a solution in which all the dependent variables are functions of a conical para- 
meter 19 alone is possible everywhere. The governing equations have an energy 
integral, and the flow must be homentropic. The assumption of slenderness 
(02 < 1) implies that the system of equations may be reduced to 

where p,u are the reduced density and axial component of velocity, y is the 
ratio of the specific heats, and other undefined quantities are constants. It is 
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shown that, for given axial and azimuthal velocities and Mach number at 6 = 6,, 
the outer edge of the core, an acceptable solution is possible for only one value of 
the radial velocity at 8 = 8,. This solution extends to the axis 6 = 0 if 1 c y < 2 ,  
but, if y > 2,  the density vanishes at a non-zero value of 6. 

Equations (1.1) are solved numerically for a range of values of the constants 
M ,  and A when y = 1.4, and the results are presented graphically. The variations 
of the pressure and velocity components with angular co-ordinate indicate that 
for small Mach number compressibility effects are confined to the immediate 
neighbourhood of the axis. In  the final section an analytical solution for the 
problem when the density variation is small is determined by dividing the 
vortex into an almost incompressible outer region and a relatively slender 
subcore in which compressibility effects are greater. For the outer core a solution 
is sought which has the inviscid solution found by Hall as a first approximation, 
and an expansion is obtained in poweis of e which is defined to be equal to the 
square of the Mach number based on the axial velocity a t  the outer edge of the 
core. As expected, this solution is not valid in the immediate neighbourhood 
of the axis of the core where compressibility effects are greater, and it is necessary 
to introduce an inner solution analogous to the boundary layer of the viscous 
problem. There is no difficulty in effecting the matching procedure for all values 
of the constant y ,  and for 1 < y < 2 this compressible layer, which is of thickness 
O(e*), has the desired effect of extending the solution to the axis, on which the 
velocity components take finite values and the density is zero. However, if 
y > 2 ,  this inner solution exhibits a singular behaviour before the axis is reached 
which is in agreement with the conclusions obtained by direct consideration of 
equations (1.1). 

It is concluded that for y < 2 a non-singular solution exists throughout the 
vortex, and that for small values of E there is a boundary-layer effect of com- 
pressibility analogous to that of viscosity as discussed by Hall. 

2. The equations of motion 
When the velocity and pressure fields are axially symmetric, the equations 

describing the flow of a compressible inviscid fluid are, in cylindrical co-ordinates 
0.2 XI, 

continuity: 

momentum : 

entropy: 

(2.1) 

and the equation of state: p’ = p’9T’. (2.6) 
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Here u' and w' are the axial and radial velocity components, v' is the circum- 
ferential velocity component, andp', p', S', T' are the pressure, density, entropy 
and temperature. 

Equations (2.1)-(2.6) admit of a solution in which all the dependent variables 
are functions of the conical parameter 8 = r / x  alone, and in terms of this as 
independent variable (2.1)-(2.5) become 

(2.10) 

(u' - wile) aspe = 0. (2.11) 

The boundary conditions for the problem are that the values of u', v', p' are 
prescribed at the outer edge of the vortex, denoted by 0 = O,, and that w' is zero 
on the axis of the core, so there are no sources or sinks. Thus, in the notation 
employed by Hall, 

e = 0, w' = 0; e = e,, u' = ~ 4 ,  v' = v,, pi = R,. (2.12) 

Two integrals of equations (2.7)-(2.11) follow immediately. From (2.7) and 
(2.9) we obtain 

(2.13) 

where W, is the value of the radial velocity w' at the outside edge of the vortex. 
The expression (2.13) is written as 

d2 = /3'p'(u' - w'/e), where j3' = V;/R,(U, - W,/B,).  (2.14) 

It should be noted that the value of W, and hence of j3' cannot be determined until 
the boundary condition on w' on the axis 8 = 0 has been imposed on the solution, 
though we may infer that it is positive for an acceptable solution since 
(1 + @)-* (8, U2 - W,) is the component of velocity perpendicular to the generators 
at the outer edge of the core, and we intuitively expect a flow in which the vortex 
is fed by fluid from outside. Equation (2.11) implies that the flow is homentropic 
so that the pressure is a function of the density alone, and the equation of state 
(2.6) may be written in the form 

p' = k'p'r, (2.15) 

Equations (2.7)-(2.10) also possess an energy integral. From (2.8), (2.10) and 
where k' is the constant of proportionality. 

du' dw' j3'p' -+e-+- = 0, ae d e  e 
(2.14) we first obtain 

(2.16) 

2-2 
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and then, from (2.7), (2.8), (2.16), 

I d  1 dp’ 
2 do p’ d0 
- - (u’2 + 8 ’ 2  + w’2) f - - = 0, (2.17) 

which, using (2.15), may be integrated as 

$(u’2 + w’2 f w’2) + __ Y P‘ 7 = H ,  (2.18) 
Y - 1 P  

where H is constant. 
An interesting result, which is a property of any such homenergic homentropic 

flow, is, as noted by Howarth (1956), that the vortex lines are parallel to the 
streamlines. For the problem under consideration it is easily deducible from the 
equations of motion. If we denote the vector (u17 v‘, w‘) by q and write down the 
components of thevector product q A  curlq, the condition for each to vanish holds 
by virtue ofequations (2.8)-(2.lO)and (2.14). Hallnoted that thevortexlineswere 
approximately parallel to the spiralling streamlines in his discussion of the in- 
compressible vortex to terms 0(62), the physical significance of this and the more 
general result obtained here being that there exists a circumferential component 
of vorticity which induces a high velocity along the axis. 

The governing equations are now rewritten on the assumption that terms 
0(02)  may be neglected. This slenderness condition was first employed by Hall 
(1961) and implies that the term O(dw’ld0) may be omitted from (2.16). It is 
then possible to write all the dependent variables as functions of log 0. Defining 
the non-dimensional variables 

+ = ioge,p, u = U.’Iu2, p = pipi,, zll(+) = w’l(u2e), (2.19) 

equations (2.7) and (2.16) become 

d { p ( u  - w)}/d$ + ~ P W  = 0, (2.20) 

d u l d 9  = PP, (2.21) 

where f l =  /3’R2/U2. The third equation to complete the system is that obtained 
by neglecting the term wf2 in the energy equation (2.18); thus 

4.2~2 + +&(u - w) + {Icy/(y - l)}pY-1 = +A2. (2.22) 

Here k = k’(Ri-1/Ug)7 and the constant A2, proportional to H ,  is given by 

v; 2ky 
u; y-I‘ 

A 2 =  1 + - + -  (2.23) 

The physical significance of the parameter k: is that it is inversely proportional 
to the square of the Mach number based on the axial velocity a t  the outside 
edge of the core since i t  follows from (2.15) that k = (YN; ) -~ .  

The order of the above system of equations may again be reduced by one. 
The radial velocity w is eliminated between (2.20) and (2.22) to give 

(2.24) 
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equation (2.21) enabling u to be written as the independent variable. The 
boundary conditions associated with equations (2.20), (2.21) and (2.24) are 

z c =  1, p =  1 when Q = 0, (2 .25)  

together with the condition on w' at the axis which implies that e-4w-tO as 
$+a. 

3. The properties of the governing equations 
The purpose of this section is to discuss the properties of equations (2.21), 

(2.24), and we shall show that, if the axial and azimuthal velocities and the 
density, are prescribed at the outer edge of the core, then a physically acceptable 
solution exists for only one value of the radial velocity at 8 = 8,. This statement 
implies a unique value of the constant p. It will also be demonstrated that, if 
1 < y 6 2, this solution extends to the axis, but, if y > 2, the density vanishes 
at  a non-zero value of 0, and the vortex has a vacuum core. Such values of y are 
not however realized in practice. 

FIGURE 1. The integral curves of equation (3.1). 

For further consideration of equation (2.24) it  is convenient to write a = py-l, 
and then we obtain 

g u y - 1 )  7 (3.1) 
da 2 ~ - ( y -  l ) M i ( A z - ~ ~ )  
du 

p - - - -  

where al/(~-1) is defined only for r 2 0. The fundamental curves which are aids 
to sketching the characteristics of equation (3.1) are a = 0, on which daldu is 
infinite, and the parabola c = + ( y - l ) M i ( A 2 - u 2 ) ,  on which da/du is zero. 
These curves are shown in figure 1, which also illustrates the two possible types 
of integral curves which can occur in the half-plane a > 0 for different values of 
the positive constant p. Each integral curve starts from the point ( 1  , l), which 
lies inside the parabola, and it follows from (2.21) that the required direction is 
in the sense of u increasing. When CT < $(y-  1)Mi(A2-u2), daldu < 0, and the 
integral curves are either of type (I) or type (11) as shown. It follows from 
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consideration of (3.1) that no two solutions corresponding to distinct values of$ 
intersect again after the point ( 1 , l ) .  Thus between these two families of curves 
must lie a dividing curve C going through the point u = A ,  and we now demon- 
strate that this, with its associated value of $, is the only acceptable solution. 
This is achieved by considering the curves (I), (11), C successively. 

(a)  Curves of type I 
These curves are excluded by consideration of the character of the point P at 
which p = 0 but u + A .  Suppose that, at P, u = uo and p N (uo-u)q where 
0 < q < 1 since dp/du is infinite. Equation (2.24) gives the value ofq as l/y, and 

FIGURE 2. Streamlines corresponding to solutions of type (I). 

FIGURE 3. Streamlines corresponding to solutions of type (11). 

such a solution is excluded on noting that the velocity perpendicular to the 
generators, given by (2.20)-(2.22) as 

u-w=-kypy- ( dpldu), (3.2) 

has (uo- u ) - l / Y  as its asymptotic behaviour as u +u0. From (2.21) it  follows that 
the value of $ at which this occurs is finite, and this radial line is therefore a 
‘limit line’ which the streamlines reach with infinite velocity. The situation, 
which is physically unacceptable, is illustrated in figure 2. 

(b) Curves of type 11 
At the point Q of figure 1, w = u since dp/du = 0. The streamlines, which in the 
neighbourhood of Q have an equation of the form xcc (&--#)-*, where & 
denotes the value of $ at Q,  are shown in figure 3 and become tangential to the 
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line #I = +Q, which they meet only a t  infinity. The fluid in the cone bounded by 
this stream surface may be at rest, but, as it has not come from any main stream 
external to the vortex, it is difficult to envisage how such a flow could be set up. 
Also experimental evidence indicates that the leading-edge vortex consists of 
a sink-type flow unlike the case under consideration, which we thus infer cannot 
occur. 

( c )  T h e  curve C 

It remains to show that the solution given by the curve C is appropriate to the 
problem. Near u = A let us assume that p - ( A  - u ) ~  where r > O.Then, since 

and at A dcrldu is finite and non-zero, we see that r 5 1 according as y 
Equation (2.24) shows that near u = A 

2. 

(A-u)"+l)[l+&(y- l)pr(A-u)'-'] N (y- l)M;(A-u)2A, (3.3) 

from which we deduce that, if y < 2, r = l /(y- l) ,  if y = 2, r = 1; while, if 
y > 2, r = 2/y, all of which are consistent with the above assertion. The value 
$A of Q corresponding to the point u = A is now examined. From (2.21) we 

du/d$ N P(A - u ) ~ ,  
obtain 

of which the integral is 
(3.4) 

( A - - U ) ~ - ~  - p(r-  l)@+const., (3.5) 

(3.6) 

except if r = 1,  in which case 

log ( A  - u) - -/3# + const. 

The results (3.5), (3.6) show that, if y < 2, the axial velocity u does not attain 
the value A until 6 + 00, and the axis is reached; but, if y > 2, $A is finite, and 
the density becomes zero at a non-zero value of the angular co-ordinate. It 
follows from (3.2) that, for the latter range of y, w = u = A when 6 = $A,  which 
is the condition for the cone q5 = 4, to be a stream surface, and the vortex has 
a vacuum core. However, if 1 < y < 2, there is no such singularity, and the 
curve C represents the required solution of equation (2.24). In the following 
section the numerical solution of this equation is considered when y = 1.4, the 
accepted value for air. 

In 3 5, where an analytical solution for small Mach number is given, we find 
support for the ideas introduced here. 

4. The numerical solution for y = 1.4 
We now investigate solutions of (2.24) numerically with the condition p = 1, 

u = 1. The parameters available are the Mach number Mz and the swirl ratio 
V,/U,, both of which may be prescribed arbitrarily to describe the conditions at 
the outer edge of the core. The value of /3 must then be chosen so that, as demon- 
strated in the previous section, the solution obtained is the one which passes 
through the point u = A ,  p = 0. Due to the difficulty of predicting this value 
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with any accuracy, and to the instability of the equation as the required point 
is neared, the semi-inverse method described below is adopted. 

If in equation (2.24) we write 

u = A S ,  ( y -  l)Pp/2A = Y ,  

we have 1 - d Y / d X  = S( 1 - S2)/ YY-', 

where 

The required solution now terminates at X = 1, Y = 0 (corresponding to the 
axis), and we take this as the starting point for the numerical integration. The 
procedure adopted was as follows. With s = so, say, (4.2) was integrated to 
X = a ( 0  < a < l),  Y = b; the appropriate values of M2, V,/U2 and /3 corre- 
sponding to this solution were derived from 

s = Q(y - 1) 1 M y 2  [ 2 A / ( y  - 1) p11-7. (4.3) 

(i) so = ( y -  1)  MEb7-1/2a2, (ii) A = a-I, (iii) 2A/(y- 1)p = 6-', (4.4) 

where the latter two are 
These equations may be 

To obtain the variation 

derived from conditions a t  the outer edge of the core. 
solved for M2, V,/U, and p remembering that 

of the axial velocity u with angular co-ordinate, the 
equation to be solved is (2.21) in the form 

d$/dX = (7 - 1)/2 Y ,  (4.5) 

with 4 = 0 when X = a, the outer edge of the core. 

when y = 1.4, using the fact that, near X = 1, Y is of the form 
Equation (4.2) has been integrated numerically for various values of s < 1 

Yo.4 = s( 1 - X2) { 1 - 5&X( 1 - X2)$  + 125s5X2( 1 - X2)3 - %6s5( 1 - 2Y2)4 

- (Ei5. 13/8)s9X3(1-X2)g+ ...}. (4.6) 

In figures 4, 5, 6 are plotted axial and circumferential velocity profiles and 
pressure distributions derived from the cases s = & , I ,  where the abscissa 8/8, 
represents angular displacement from the axis. The function employed to illu- 
strate the pressure, namely (p' - P2)/R2 V;, where P2 denotes the value of p' at 
the outer edge of the core, is not the most convenient for demonstrating the fact 
that p' vanishes on the axis, but was chosen to facilitate direct comparison with 
figure 7 of Hall's (1961) paper for zero Mach number when the pressure tends to 
minus infinity as the axis is reached; the corresponding profile for zero Mach 
number is included in each diagram. Although every s = so yields an infinite 
number of solutions for arbitrary V,/U2, in each profile this parameter has been 
taken as unity since Hall has demonstrated that the effect of varying swirl ratio 
is of degree rather than character. It should be noted that the gradient of the 
pressure, like that of the other functions considered, is infinite on the axis, 
although this is not readily apparent due to the scale chosen. 
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FIGURE 5. Circumferential velocity profiles showing the effect of varying M,.  
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With s = $ and K/U2 = 1, the relations (4.4) lead to A = 2.74, the value of u on 
the axis, H, = 0.95, p = 1.12. The other quantity of interest is the value of the 
radial velocity at the outer edge of the core which is obtained as W2/U,S, = 0-10. 
With s = 1 the corresponding values are A = 1-98’ M, = 1.6, p = 1.69 and 
W,/U,S2 = 0.41. The quantities associated with the curve for zero Mach number 
are s = 0, ~3 = 0.732, W,/U,S2 = -0.366, while A+m. The sign of the radial 
velocity in the different cases is interesting. When the Mach number is zero, it  is, 
as shown by Hall, negative throughout the core; in the two cases considered here 
with the Mach number O( 1) it  was found to be positive throughout though with 
w < u so that each streamline does in fact cross every generator it meets, while 

0 

- 0.5 

1.0 

F4 

- 1.5 

- 2.0 

\ 
\ M 2 = 0  

\ 
\ 
\ 
\ 
\ 
\ 

I I I I 

el4 

I I I I 

el4 
FIGURE 6. Pressure distributions in the vortex showing the effect of varying M,.  

in the final section it is shown that for small Mach number w changes sign from 
negative to positive in the neighbourhood of the axis. Perhaps the most un- 
expected feature of the velocity profiles is that the circumferential velocity in 
figure 5 sinks to zero on the axis in contrast to the incompressible case. 

Both figures 4 and 5 illustrate that for small Mach number compressibility 
has a ‘boundary-layer’ effect on the flow in the immediate neighbourhood of 
the axis, analagous to the diffusive subcore discussed by Hall. The similarity 
between the compressible and viscous vortices may be emphasized here. In  both 
cases the axial velocity attains a finite value on the axis of the core while the 
circumferential velocity is reduced to zero. One difference is that for the com- 
pressible vortex the pressure, like the density, is zero on the axis, but is non-zero 
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for the viscous vortex. However, the essential features are the same. In the 
next section the ' boundary-layer ' phenomenon noted above enables analytical 
solutions of the governing equations to be obtained as power series in ill,, for 
iM, < 1, by means of a matching procedure between an outer 'incompressible' 
layer and an inner ' compressible ' layer. 

For large M, it follows from equation (2.24) that 

ppy = +?/MH(A - u)' (2A + u), 

p = +?/MH(A - I), (2.4 + 1). and hence that 

Thus as M2+m, p+m, and also s+m. In  addition W,-+ U,8,, and the stream- 
lines only just enter the vortex. It can be shown by consideration of equation 
(2.21) that the velocity components and density attain their axial values in the 
immediate neighbourhood of the outer edge of the vortex so we now have a 
'boundary-layer' phenomenon exhibited a t  8 = 8,. The profile as M.+co is 
included in figure 4 and gives a qualitative assessment of the accuracy of the 
profiles for finite Mach number. 

5. The solution for small Mz 
When M, is small, the effects of compressibility are, as noted in the previous 

section, confined to a narrow region in the neighbourhood of the axis, enabling 
the solution to be determined analytically throughout the vortex by standard 
' boundary-layer ' techniques. The most convenient equations to consider are 
(2.20), (2.21) and (2.8), which, when written in terms of the variables defined by 

(5.1) 
(2.19), becomes 

If we let M, -+ 0 in this equation, it follows that in the limit the density p is con- 
stant and equal to its value at the outside edge of the core. The solutions for the 
velocity components are then as found by Hall (1961), and, as this is to be 
regarded as a first approximation to the complete compressible solution, the 
appropriate parameter for a series expansion is e = M i .  To find a solution of 
(2.20), (2.21) and (5.1) in powers of e,  we write 

M ~ ( U  - W) du/d$ +py-'dp/d$ = 0. 

p = po+EpI+€2p2+..., (5.2) 

with similar expansions for u, w, p, and in terms of these functions the boundary 
conditions are, from (2.25), 

uo = 1, po = 1 ,  ui = 0, pi = 0 (i l),  when $ = 0, (5.3) 

e-+w,+O as #+a for all i .  (5.4) 

The expansion for p is necessary as this constant also depends on the com- 
pressibility. 

When the series of the form (5.2) are substituted into (3.20), (2.21), (5.1), the 
the terms of lowest order in e give 
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and the solution of these satisfying the boundary conditions (5.3), (5.4) is 

po = 1, uo = 1+poq5, wo = -+Po. 
Using (2.14), the value of Po is obtained as 

Po = ( 1 + 2 V y u ; ) ~ - l  > 0, (5.9) 

and (5.8), (5.9) are identical with the solution given by Hall for the outer inviscid 
region of the vortex. 

The equations satisfied byp,, ul, w1 follow from (2.20), (2.21), (5.1) onequating 
to zero the coefficients of E .  From (5.1) we obtain, using (5.8), 

P;-2(dPlld4) = - P o ( l + : P o + P o 4 ) ;  (5.10) 

thus, integrating, we have 

P 1 =  -Po[(l+&Po)4+&Po421. (5.11) 

Then (2.21) gives, making use of(5.11),  

and, since ul(0) = 0, 

The equation for w1 is obtained from (2.20) as 

d2Llld9 = - P0[(1+ * P o )  4 + &P0421 + Pl, 

*hl = - 9P3(1 +&Po) P + + P o P l  + P 1 6  

(5.12) 

(5.13) 

-dwlldq5+2~1= P o [ ( l + ~ P o ) z + + 3 8 ~ ( ~ + ~ P 0 ) q 5 + ~ P ~ ~ 2 1 - P 1 ,  (5.14) 

using (5.8), (5.10), (5.13). The solution of (5.14) satisfying the condition that 
e-+wl-+O as $-+a is 

w1= *Po(l + P P O + ~ P ~ ) - - * ~ I + # P W  +Po)Sb+$Po"P. (5.15) 

Equating coefficients of E in (2.14) gives the value of P1 in terms of Po as 

P I ( l + P O )  = *P:(1+;Po+;Pa (5.16) 

and so (5.15) may be written 

TO1 = (PlIPO) (1 + *Po)  + *P31 + P o )  9 + $PiVZ. (5.17) 

The equations and solutions for pz, uz, wz follow in a similar manner. As the 
details are tedious, we merely quote the value of P2 which is given by 

P z (  1 + P o )  = iPg[Y( 1 + ;Po + %5Pi + -387-P;) - #Po(  5 + sLPo + 13Pg)] 

-$PoP1(1 ++Po--&P3+Pa1 +gPo) /Po.  (5.18) 

It is at once apparent that, however small the value of 6,  the solution to 
equations (2.20), (2.21), (5.1) given by (5.2) with the above values of po, uo, wo, 
pl, ul, w1 will not be valid in the immediate neighbourhood of the axis since the 
polynomial solutions tend to infinity with q5. The reason for this is that com- 
pressibility effects are greater in this region and cannot be neglected even to the 
first order as is implied by (5.5)-(5.7). The appropriate variables for describing 
the flow in this inner zone are now determined, and the solution in the inner zone 
must be matched with the present solution in their common region of validity 
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The independent variable for this region will be denoted by $, and it is obtained 
by multiplying q5 by an appropriate power of E so that in the limit, as E + 0, a 
matching procedure may be effected between the outer and inner solutions as 
g5 4 00 and $ -+ 0. The scaling factors required to multiply q5 and the dependent 
variables p, u, w are determined by consideration of the forms of p, u, w obtained 
from the outer solution in the double limit E-+ 0, q5 +co and from the requirement 
that at  least one of the terms in Mg in (5.1) shall be of the same order as py-2dp/d$ 
in the inner layer as e + 0. We write * = Em#, p = @p, U = ETU, Ti = E S W ,  (5.19) 

where m, q, r ,  s are constants, and p ,  Z, W are independent of E to the first order. 
In the limit of zero E ,  (5.8) shows that for large 4, p N 1, u N Po$, w N -+Po, and 
we have at once that q = s = 0 and r = m. Making the transformation (5.19) in 
equation (5.1) gives 

E ( E - ~ U -  W) dE/d$ + ~ m p ~ - 2 d ~ / d $  = 0, (5.20) 

showing that the only acceptable value of m is $; this has the desired effect of 
giving the same order in e to i id i i /d$  and jP-Zddp/d$, the remaining term being 
of higher order. With this value of m, when written in terms of the new variables 
given by (5.19), equations (2.20), (5.1), (2.21) become 

(5.21) 

(5.22) 

(5.23) 

Equations (5.21)-(5.23) are the appropriate form of the equations of motion for 
the description of the flow in the inner core of the vortex. As E -+ 0, they become 

(5.24) 

(5.25) 

(5.26) 

where the expansion of /3 in powers of E is given by (5.2), and the coefficients Pi 
are determined by the outer solution. The boundary conditions associated with 
equations (5.24)-(5.26) are that, as $ + O ,  Po, Go, 2, must match with po, E*u,, wo 
as $-+a. Equation (5.25) may be integrated a t  once to give 

$~g+p$-l / (y-  1) = const. = *I'2 say, (5.27) 

and, since for large $ we have from (5.8) that po - 1, u,, N Po$, i t  follows that 
for small $, po N 1, Uo N Po$. This gives the value of r2 as 

r2 = 2/(7- 1). (5.28) 

Substituting for Po from (5.26) into (5.27) we obtain 

(5.29) 

~ 

D $ = I 0  UO rF---- dt  
and, integrating, 

2 - t 2  1Ky 1)' 1 -  
since U,(O) = 0. 

(5.31) 
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It is a t  this stage that i t  first becomes evident that the flow pattern in the 
vortex core depends critically on the value of y. It follows from its definition as 
the ratio of the specific heats that y > 1, and from (5.27) we see that for a 
meaningful value of the first approximation to the density Z0 6 I'. Then (5.31) 
gives the maximum value of $ as 

at 
~5 = s,' (r2 - t2)iicr-1)7 (5.32) 

which is infinite if l/(y- 1) 2 1 but is finite if l/(y- 1) < 1, and the integral is 
convergent. Thus Po remains non-zero until the axis is reached if 1 < y < 2 but 
becomes zero at a finite value of $ if y > 2. This result is not unexpected since 
in $ 4  i t  was shown that the flow extended to the axis if y < 2, but, if y > 2, the 
density became zero at a non-zero value of the angular co-ordinate. The value 
r' of Go attained on the axis when y < 2 indicates that the correct integral 
curve was found in 0 3 where it was asserted that the axial value of u was equal 
to A since for small M2 we have A2 = 2/{(y- l)Mg}. 

The integral in (5.32) can be evaluated in terms of known functions for certain 
values of y, and in particular, if y = 1-4, it  may be written 

(5.33) 

and the fact that $ -+ CO as Go -+ I' is at once apparent. 
The value of W, may now be obtained from (5.24), and it is found that 

(5.34) 
- 
w, = - %(Po - u ; / P m ,  

and this automatically satisfies the condition that W,-+-+P, as $ + O  a t  the 
outer edge of the inner layer. If 1 < y < 2, then W, is zero on the axis; if y = 2, 
its value there is Po; though, if y > 2, and Po vanishes for $ = $s, then rUo+oo 
as $-+$*, which is again in agreement with $ 4  where it was demonstrated that 
at the end point of the solution w = u, and u = O(E-4). Another interesting 
feature of the solution (5.34) is that Go changes sign from negative to positive 
when yi58-l= ii;. This means that in the neighbourhood of the axis the radial 
flow is outwards, though small, but is towards the axis in the remainder of the 
vortex. 

To take account of the terms in €4 in equations (5.21)-(5.23) we expand the 
dependent variables as power series in €4 and continue the matching procedure 
outlined above between the solution for the outer part of the vortex and the 
inner core, in which compressibility effects are important. We write 

p = ~ o + " 4 ~ 1 + € ~ 2 + . . .  (5.35) 

with similar expansions for ;iz and W, where Po, ?io, Go are given by (5.27), (5.31), 
(5.33). Substituting (5.35) into (5.21)-(5.23), the terms in ~f give 

(5.36) 

(5.37) 

(5.38) 
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Using (5.26) and (5.24) successively, (5.37) may be written in the form 

(5.39) 

which, when integrated, becomes 

Go El+ pJ-2p1 = - +pop0 Go + A ,/Po, (5.40) 

where A, is a constant of integration to be determined by matching with the 
appropriate terms of the outer solution. Substituting for p, in (5.40) from (5.38) 
we obtain a first order differential equation for U,. It is 

au, p 0 u 0 -  Go A,  p+/si(-2 u,= -*/3:7+- &-3 p;-2 (5.41) 

Making use of (5.25)) (5.26), an integrating factor of this equation is found to be 
(Po)-,,  so performing the integration we have 

(5.42) 

where B, is a second constant of integration. Writing the outer solution for u in 
terms of the variable @ shows that, as $ + O ,  we require E0 N Po@, which is 
satisfied by (5.31), and 

(5.43) 

u2 - P I $ *  (5.44) 

- 
21, - 1 - 1 + +Po) *2? 

Considering the expansion of Po for small @ obtained from (4.27)) (4.31), and 
imposing the boundary conditions G, = 1, dU,/d@ = 0 at ~ = 0, gives A ,  = 0 
and B, = 1.  Thus we obtain from (5.42) 

u1 = po(ipologPo+ I ) ,  

3, = - u0p;-qu1 + ;popo). and from (5.40) 

(5.45) 

(5.46) 

The following expression for G1 is easily obtained from (5.36): 

- I p U  
PLl, = - - O(U1[3+(y- 

2 pi-2 
(5.47) 

Examining the behaviour of p,, u,, 5, in the neighbourhood of the axis as @-+ co 
we see that in the non-singular case 1 < y < 2, since Po -+ 0, Go -+ I' as @ + 00, all 
three functions tend to zero except when y = 2, in which case Gl+-/3tJ2. 
However, when y > 2, Po = 0 when $ = $s, and, as @ nears this value, G, tends 
to infinity. 

The third term in the expansion for the inner solution has also been found 
though the details are omitted. The values attained by the functions on the axis 
are that as $-+ 03, p2 -+ 0, G2 -+ (lj4r) (p," + 2P0 + Z), G2 -+ 0, which are again in 
agreement with the expansions for small Mach number of the axial values of 
these functions deduced in $3. If y > 2, a similar singular behaviour to that 
indicated above is exhibited by all three functions as @ + @s. 
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The conclusion is then that, if y lies in the range 1 < y 6 2, which includes 
y = 1.4, a perfectly regular solution can be found throughout the core which is 
divided into an ‘incompressible ’ outer layer together with a ‘compressible ’ 
inner layer of thickness O(d) .  The density remains non-zero until the axis is 
reached, and in the neighbourhood of the axis the axial velocity u is O ( d )  and 
so is finite for non-zero 8. The convergence of the expansions in B obtained is slow, 
but formally there should be no difficulty in obtaining as many terms of the 
series as required. 

The author is indebted to Dr M.G.Hal1 for arousing general interest in 
leading-edge vortices, and to Prof. K. Stewartson, in whose department this work 
was carried out, for his advice and encouragement. 
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